
Reviewing Area Between Curves (HW #1)

 $\int_a^b f(x) dx \approx$ the sum of small quantities that are indexed by values on a real number axis:

Label a number x_i corresponding to the *i*th small quantity $f(x_i)\Delta x$. Now write the definition of $\int_a^b f(x) dx$.

All applications of the definite integral must have small quantities indexed by a real number axis of your choosing.

Find the area between $y = x^2$ and $y = x^3$ if $-1 \le x \le 2$. Use the x-axis to index slices.

Find the area bounded by $y = \ln(x)$, y = 0, and x = 2. Using the y-axis to index slices is easier than using the x-axis unless you remember integration by parts.

Find the area in the first quadrant between $x^2 + y^2 = 1$ and $\sqrt{x} + \sqrt{y} = 1$. Hint for the second curve: solve for y and differentiate twice to show the curve is concave up.