Math 200 Homework #8: (21 problems)

Answers to every homework question are given so your homework grade will depend only on completeness and presentation. I should be able to see at a glance that you have done all of the problems with sufficient work. Write your problems in order and write the circled problem number to the left of the margin; draw the margin if necessary. If you run out of room in the middle of a problem, write a note directing me to the end of the assignment and put the remainder of your work there. Leave a margin at the top of each side of your stapled papers so that the problem numbers and all of your work are visible.

#1, 2: Calculate the curl of \vec{F} .

1)
$$\vec{F}(x, y, z) = \left\langle \frac{y}{x}, \frac{y}{z}, \frac{z}{x} \right\rangle$$

2)
$$\overline{F}(x, y, z) = e^{y} \hat{\mathbf{i}} + \sin x \hat{\mathbf{j}} + \cos x \hat{\mathbf{k}}$$

- 3) Verify Stokes' Theorem if $\vec{F}(x, y, z) = \langle y, x, x^2 + y^2 \rangle$ and S is the upper hemisphere $x^2 + y^2 + z^2 = 1$, $z \ge 0$ oriented up.
- 4) Use Stokes' Theorem to compute $\iint_S \nabla \times \vec{F} \cdot d\vec{S}$ if $\vec{F}(x, y, z) = \langle x + y, z^2 4, x\sqrt{y^2 + 1} \rangle$ and S is the wedge shaped box without a top oriented out that is bounded by the coordinate planes, x + y = 1, and z = 2.
- 5) Use Stokes' Theorem to compute $\iint_S \nabla \times \vec{F} \cdot d\vec{S}$ if $\vec{F}(x, y, z) = x^2 z^2 \hat{\mathbf{i}} + y^2 z^2 \hat{\mathbf{j}} + xyz \hat{\mathbf{k}}$ and S is the part of the cone $y^2 = z^2 + x^2$ that lies between y = 0 and y = 3, oriented with a positive y coordinate.
- 6) Use Stokes' Theorem to compute $\iint_S \nabla \times \vec{F} \cdot d\vec{S}$ if $\vec{F}(x, y, z) = \langle xyz, xy, x^2yz \rangle$ and S consists of the top and four sides, but not the bottom, of the cube with vertices $(\pm 1, \pm 1, \pm 1)$, oriented outward.

#7 – 9: Use Stokes' Theorem to find $\int_C \vec{F} \cdot d\vec{s}$ if C is oriented counterclockwise from above.

7)
$$\vec{F}(x, y, z) = \langle x + y^2, y + z^2, z + x^2 \rangle$$
 and C is the triangle with vertices $(1, 0, 0), (0, 1, 0), \text{ and } (0, 0, 1).$

8)
$$\overline{F}(x, y, z) = yz\hat{\mathbf{i}} + 2xz\hat{\mathbf{j}} + e^{xy}\hat{\mathbf{k}}$$
 and C is the intersection of $z = 5$ with $x^2 + y^2 = 16$.

9)
$$\vec{F}(x, y, z) = \langle x^2 z, xy^2, z^2 \rangle$$
 and C is the intersection of $3x + 2y + z = 1$ with $x^2 + y^2 = 9$.

10) Calculate
$$\iint_{S} \nabla \times \vec{F} \cdot d\vec{S}$$
 if \vec{F} satisfies the conditions of Stokes' Theorem and S is the sphere $\rho = a$.

#11, 12: compute the divergence of the given vector field.

11)
$$\vec{F}(x, y, z) = \langle x - 2zx^2, z - xy, z^2x^2 \rangle$$

12)
$$\overline{G}(x, y, z) = \nabla \times \vec{F}(x, y, z)$$
 where $\vec{F}(x, y, z) = \langle F_1(x, y, z), F_2(x, y, z), F_3(x, y, z) \rangle$

- 13) Verify the Divergence Theorem for $\overline{F}(x, y, z) = 2x\hat{\mathbf{i}} + 3z\hat{\mathbf{j}} + 3y\hat{\mathbf{k}}$ and the region $x^2 + y^2 \le 1$ for $0 \le z \le 2$.
- 14) Use the Divergence Theorem to evaluate $\iint_{S} \langle x, y^2, z + y \rangle d\vec{S}$ if S is the boundary of the region contained in $x^2 + y^2 = 4$ between z = x and z = 8. S is oriented out.
- 15) Use the Divergence Theorem to evaluate $\iint_{S} \langle \cos z + xy^2, xe^{-z}, \sin y + x^2z \rangle d\vec{S}$ if S is the boundary of the solid inside $z = x^2 + y^2$ below z = 4, oriented out.
- 16) Use the Divergence Theorem to evaluate $\iint_{S} 3x + y + z^2 dS$ if S is $x^2 + y^2 + z^2 = 9$.

17) Prove
$$\bigoplus_{\partial E} (f \nabla g) \cdot \hat{n} dS = \iiint_E f \nabla^2 g + \nabla f \cdot \nabla g dV$$
.

18) Prove
$$\bigoplus_{\partial E} D_{\hat{n}} f dS = \iiint_E \nabla^2 f dV$$
.

- 19) A hose feeds into a small screen box of volume 10 cm^3 that is suspended in a swimming pool. Water flows out across the surface of the box at a rate of 12 cm^3 / sec. Let \vec{v} be the velocity field of water and P the center of the box. Estimate the divergence of \vec{v} at P and include units in your final answer.
- 20) The velocity field of a fluid \vec{v} cm / sec has a divergence at P = (2, 2, 2) of 3 / sec. Estimate the flow rate out of the sphere of radius 0.5 cm centered at P.
- 21) CAS Problem (3 points): Use **MatLab** to solve the following. Use a live script and turn in a pdf copy.

Verify the Divergence theorem if $\vec{F}(x, y, z) = \langle x^2 y^2, y^2 z^2, z^2 x^2 \rangle$ and the solid E is bounded by $x^2 + y^2 + z^2 = 2$ on top and $z = \sqrt{x^2 + y^2}$ on the bottom.

Brief answers:

1)
$$\frac{y}{z^2}\hat{\mathbf{i}} + \frac{z}{x^2}\hat{\mathbf{j}} - \frac{1}{x}\hat{\mathbf{k}}$$
 2) $\langle 0, \sin x, \cos x - e^y \rangle$ 3) 0

2)
$$\langle 0, \sin x, \cos x - e^y \rangle$$

4) 1/2 5) 0 6) 0 7) -1 8) 80π

9) $243 \pi/4$ 10) 0 11) $1-4zx-x+2zx^2$ 12) 0

13) 4π 14) 64π 15) $32\pi/3$ 16) 108π

19) 1.2 \sec^{-1} 20) $\pi/2$ cm^3/\sec