Math 200 Name:

1. (6 points) Find the equation of the plane in standard form that contains the points P = (1, 1, -2), Q = (2, 3, 1), and R = (4, -1, 1).

$$PQ = \langle 1, 2, 3 \rangle$$

 $\times PR = \langle 3, -2, 3 \rangle$
 $\langle 12, 6, -8 \rangle$
Use $\vec{n} = \langle 6, 3, -4 \rangle$
and $\vec{P} = \langle 1, 1, -2 \rangle$.
Let $\vec{X} = (x, y, 7)$ be
any point in the plane.

Then
$$\overline{X} \cdot \overline{A} = \overline{P} \cdot \overline{n}$$

 $\Rightarrow 6x + 3y - 4z = (1, 1, -2) \cdot (6, 3, -4)$
 $\Rightarrow 6x + 3y - 4z = 17$

2. Let $\vec{u} = 2\hat{\imath} - 3\hat{\jmath} - \hat{k}$ and $\vec{p} = <3,0,4>$. You may use work from one part in other parts.

(a) (4 points) Find the area of the rectangle spanned by \vec{p} and \vec{u} .

(b) (2 points) Find the flux of the constant vector field $\vec{F} = <-2, 1, 1>$ through the parallelogram spanned by \vec{u} and \vec{p} and oriented from \vec{u} to \vec{p} .

(c) (1 point) Find the volume of the box spanned by \vec{F} , \vec{p} , and \vec{u} .

- 3. Let $\vec{v} = \hat{i} 2\hat{j} + 2\hat{k}$ and $\vec{w} = <3, -1, 2>$. You may use work from one part in other parts.
 - (a) (3 points) Find the cosine of the angle between \vec{v} and \vec{w} .

(b) (4 points) Find $\vec{w}_{\parallel \vec{v}}$ and $\vec{w}_{\perp \vec{v}}$.

$$\overline{U}_{N\overline{V}} = \frac{\overline{U} \cdot \overline{V}}{\overline{V} \cdot \overline{V}} \overline{V}$$

$$\widetilde{W}_{17} = \widetilde{W} - W_{17}$$

$$= \langle 3, -1, 2 \rangle - \langle 1, -2, 2 \rangle$$

$$= \widetilde{W}_{17} = [\langle 2, 1 \rangle, 2 \rangle]$$

$$\Rightarrow \overline{\omega}_{uv} = \frac{9}{9} \langle 1, -2, 2 \rangle \\
= \langle 1, -2, 2 \rangle = \overline{V}. \Rightarrow \overline{\omega}_{uv} = \langle 2, 1, 0 \rangle$$

(c) (1 point) Find the work done by a force \vec{w} applied to a particle with displacement \vec{v} .

(d) (4 points) Find a position function the coordinate equations of a line that passes through the point (0,3,-1) that is parallel to \vec{w}

$$=)$$
 $\sqrt{2}(t) = (3t, 3-t, -1+2t)$

(and)
$$|x=3t|$$

 $|y=3-t|$
 $|z=-1+2+$