1) Find an integral that represents the work done by the force $\vec{F} = \langle 3, x, y \rangle$ on a particle that moves on the helix parameterized by $\vec{r}(t) = \langle \cos t, \sin t, t \rangle$ from t = 0 to $t = \frac{3\pi}{2}$, and then **evaluate the integral**. (10 points)

2) Find an integral that represents the mass of the wire that lies on $y = x^2$ from (0,0) to (1,1) in the xy - plane if its linear density is $\delta(x, y) = 8x$, and then **evaluate the integral.** (10 points)

3) Find a parameterization for the circle that lies in the plane z = 5 with radius 2 that is centered at (2, 5, 5). (5 points)

Page 2

4) Does the line determined by the points (6,1,-2) and (4,-3,1) intersect 3x-4y+z=-1? If so, then where? If not, then explain how you know. (10 points)

5) Use the contour plot of f(x, y) to estimate $f_x(4,0)$. Draw an appropriate segment. (6 points)

6a) Find all second partial derivatives of $f(x, y) = x\cos(y) - \ln(y+2x)$. (5 points)

6b) What is $\nabla f(1,0)$? (4 points)

Page 3

7a) A curve is parameterized by $\vec{r}(t) = \langle \cos(2t), \sin(2t), t \rangle$. Find the curvature of the path when $t = \frac{\pi}{2}$. (10 points)

7b) $\vec{r}(t) = \langle \cos(2t), \sin(2t), t \rangle$ as in #7a. Suppose $\vec{w}(\pi/2) = \langle 1, 1, 1 \rangle$ and $\vec{w}'(\pi/2) = \langle 1, 0, 1 \rangle$. Find and simplify $\frac{d(\vec{w} \cdot \vec{r}')}{dt} \Big|_{t=\pi/2}$. Show work. (5 points)

8) Evaluate $\int_C (2x-3y)dx + xdy$ if C is the curve that moves on a line from (0, 2) to (0, 5) and then on a line from (0, 5) to (5, 5). (10 points)

Page 4

9) Let $\vec{v} = \langle 1, 2, 1 \rangle$ and $\vec{w} = 2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$. You may use work from one part to solve other parts. (20 points) A) Find the plane parallel to \vec{v} and \vec{w} that passes through (0, 0, 0). Use standard form for your answer.

B) Find the area of the **triangle** determined by \vec{v} and \vec{w} .

C) Find the flux of the force $\vec{F} = \langle 1, -3, 2 \rangle$ through the parallelogram determined by \vec{v} and \vec{w} , and oriented from \vec{v} to \vec{w} by the right hand rule. (Units: g/m².)

D) Find the component of \vec{v} on \vec{w} .

10) Sketch the surface corresponding to $y^2 + z^2 = 4$. Label the axes. (5 points)