Motivation

Have you seen some Linear Algebra in earlier classes? Yes!

Write $\begin{cases} \frac{x+2y-z}{z=3} \\ x-3y+z=2 \\ 2x-y-z=3 \end{cases}$ using matrices and vectors and solve the problem again with an "augmented" matrix.

$$\left(\begin{array}{c} 1 & 2 & -1 \\ 1 & -3 & 1 \\ 2 & -1 & -1 \\ \end{array} \right) \left(\begin{array}{c} X \\ 3 \\ 2 \\ \end{array} \right) = \left(\begin{array}{c} 3 \\ 2 \\ 3 \\ \end{array} \right) \left(\begin{array}{c} 1 & 2 & -1 \\ 3 \\ \end{array} \right) \left(\begin{array}{c} 1 & 2 & -1 \\ 1 & -3 & 1 \\ 2 & -1 & -1 \\ \end{array} \right) \left(\begin{array}{c} 3 \\ 2 \\ 3 \\ \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 3 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 3 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 3 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 3 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 3 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 3 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \\ \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 & 2 \end{array} \right) \left(\begin{array}{c} 1 & 2 \\ 2 \end{array} \right) \left(\begin{array}{c} 1 & 2 \end{array} \right)$$

If we add a column for another variable to this system, we would have a general solution consisting of an infinite amount of solutions. MatLab uses projection (chapter 4) to give just one solution.

Why are there decimals in this answer, but not the first one? (3, 1, 2, 0) is also a solution of the next system, but the program gives a different answer:

