Always show work to defend your answer in a logical and organized fashion unless told otherwise.

- 1. $A = \begin{bmatrix} -1 & 3 \\ 2 & -1 \\ 2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \end{bmatrix}$ for all parts of this question.
 - (a) (5 points) Without work, write the rank-1 decomposition of AB.

(b) (5 points) Without work, give a linear combination of columns of A that is equal to column 1 of AB.

(c) (5 points) Without work, write a product of a row vector and a column vector equal to $(AB)_{23}$.

2. (10 points) Solve a system using augmented matrices and Gaussian Elimination to find a linear combination of $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 3 \\ -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ that equals $\begin{bmatrix} 4 \\ 6 \\ 6 \end{bmatrix}$.

- 3. $A = \begin{bmatrix} -1 & 2 & 1 & 0 & 2 \\ 3 & -6 & 1 & 4 & 2 \\ 1 & -2 & 1 & 2 & 2 \end{bmatrix}$ for all parts of this question.
 - (a) (15 points) What is the LU–factorization of A?

- (b) (5 points) What are the pivots?
- (c) (5 points) Use U to calculate N(A).

- 4. The LU factorization of B is $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & -3 \\ 0 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ for each part of this question.
 - (a) (10 points) Use the **back substitution method** to solve $B\vec{x} = (1, 10, -13)$.

(b) (5 points) Without work, write a linear combination of columns of L equal to column 2 of B.

(c) (10 points) Find the first column of B^{-1} .

